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ABSTRACT
Background: Increasing exposure to climatic features is strongly linked to various 
adverse health outcomes and mortality. While the link between these features and 
cardiovascular outcomes is well established, most studies are from high-income 
countries.

Objectives: This review synthesizes evidence as well as research gaps on the 
relationship between climate indicators, household/ambient air pollution, and all-
cause cardiovascular disease (CVD) morbidity and mortality in low- and middle-
income countries (LMICs).

Methods: Seven electronic databases were searched up to June 15, 2024. Articles 
were included if they focused on LMICs, addressed all-cause CVD morbidity and/or 
mortality, and studied climate or environmental exposures. Studies were selected 
using ASReview LAB, extracted and analyzed with random effect meta-analysis 
performed if sufficient articles were identified.

Results & Conclusion: Out of 7,306 articles, 58 met the inclusion criteria: 26 on 
morbidity, 29 on mortality, and 3 on both. Exposures included PM10, PM2.5, NO2, SO2, 
BC, O3, CO, solid fuel usage, and temperature variation. Short-term exposure to PM2.5 
was significantly associated with CVD morbidity (RR per 10 µg/m3 increase:1.006, 95% 
CI 1.003–1.009) and mortality (RR:1.007, 95% CI 1.002–1.012). Short-term exposure 
to NO2 and O3 also increased CVD mortality risk. Long-term exposure to PM2.5 elevated 
CVD morbidity (RR per 10 µg/m3 increase:1.131, 95% CI 1.057–1.210) and mortality 
(RR:1.092, 95% CI 1.030–1.159). High and low temperatures and long-term solid fuel 
use were linked to CVD deaths. The bulk of studies were from mainland China (72%), 
which may not accurately reflect the situation in other LMICs. Sub-Saharan Africa was 
particularly lacking, representing a major research gap.
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INTRODUCTION
The World Health Organization (WHO) estimates that cardiovascular diseases (CVD) are 
responsible for approximately 32% of all deaths, with more than 75% of these deaths occurring 
in low- and middle-income countries (LMICs). Within the regions of Sub-Saharan Africa, 
cardiovascular diseases are the most common cause of noncommunicable diseases (NCDs), 
with a regional burden that is anticipated to double by the year 2030 (1–3).

Climatic and environmental disruptions to health can be observed via multiple systems and 
pathways, affecting people throughout the life course. It is estimated that every year, air pollution 
is responsible for approximately 7 million premature deaths around the world, with cardiovascular 
diseases being among the top four diseases related to air and other environmental exposures 
(4–8). Several lines of evidence have demonstrated that increasing and ongoing exposure to 
climatic features such as heat waves, air pollution, and household air pollution can cause or 
are strongly related to myriad adverse long- and short-term health outcomes such as CVD, 
respiratory disorders, elevated blood pressure, malignancies, heart disease, and death (4, 9–24).

However, the majority of these estimates are based on studies from high-income countries. As 
such, there is very little in terms of evidence synthesis from a primarily LMIC context. With the 
burden of CVD anticipated to double by the year 2030 (25), the limited health care infrastructure 
in LMIC settings and substantial differences between pollutant sources, extrapolations of 
evidence from high-income settings are of limited use. The purpose of this review, therefore, 
is to examine and synthesize the evidence related to key indicators of climate, household/
ambient air pollution, and their association with all-cause CVD morbidity and mortality in 
LMICs. We will also evaluate relevant research gaps in this setting related to the link between 
climatic indicators and all-cause CVD morbidity and mortality in LMICs.

METHODS
SEARCH STRATEGY

The systematic review and meta-analysis protocol followed PRISMA guidelines and was 
registered with PROSPERO (registered ID: CRD42022373943). We searched seven electronic 
databases, including PubMed, Embase, SCOPUS, LILACS, AIM, Web of Science, and Global 
Health. Specific search terms for each database are included in the appendix.

ELIGIBILITY CRITERIA

Studies were eligible for inclusion in the current study if they contained information related 
to climate and environmental exposures and their effect on all-cause cardiovascular disease 
morbidity and mortality amongst adults (i.e., 18 years and older) in low- and middle-income 
countries. A wide range of reporting all-cause CVD morbidity/mortality was allowed, including 
physician diagnosis, self-report, national disease surveillance database, hospital records, verbal 
autopsies, and death certificates. The definition of LMIC was based on the World Bank definition 
at the time of the literature search. Studies that did not primarily examine environmental 
conditions, examine pediatric populations, have a high-income-country focus, or were restricted 
to specific cardiovascular conditions (e.g., hypertension alone) were not included.

There was no restriction on the publication date. The search was initially performed on 
November 20, 2023, and updated on June 15, 2024.

ARTICLE SELECTION AND DATA EXTRACTION

All articles identified by the initial searches were exported to Rayyan (26) for deduplication. 
Following this, the remaining articles were imported to ASReview lab version 1.1.1 (27) for title 
and abstract screening. ASReview is an artificial intelligence tool that utilizes a TF-IDF, Naïve 
Bayes, mixed sampling model to rank titles and abstracts based on their probability of being 
relevant. This probability is initially based on positive examples provided by the reviewer and 
subsequently refined following inclusion or exclusion decisions. Titles that are less likely to 
qualify for the current review are ranked lower, with the ranking being dynamically updated 
following each decision. A stopping rule based on a data-driven strategy was employed by two 
reviewers (SG and GD) and set at 250 consecutive irrelevant articles. Any disagreement about 
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Buadong et 
al., 2009 (33)

Bangkok,

Thailand

Time-series PM10, O3 Morbidity – daily 
hospital visits

There was no significant association for either 
PM10 or O3 on CVD morbidity in the 3-day 
cumulative lag model. 

Fair

Dong et al., 
2013 (56)

Liaoning 
Province, China 

Cross-
sectional

PM10, SO2, NO2, 
O3

Morbidity – Positive 
response from 
questionnaire

No significant association was found between 
any of the air pollutants and CVD morbidity

Fair 

Tong et al., 
2014 (36)

Tianjin 
Municipality, 
China

Time-series PM10, SO2, NO2 Morbidity – Database A 10 µg/m3 increase in the 2-day average 
concentration of PM10 and SO2 were 
associated with a 0.19% (0.08–0.31) and 
0.43% (0.03–0.84) increase in CVD morbidity 
respectively. No significant association was 
found for NO2.

Fair 

Giang et al., 
2014 (31)

Thai Nguyen, 
Vietnam

Time-series Temperature Morbidity – Hospital 
admission

Over a 0–30-day lag period, there was a 12% 
(1%–25%) increase in CVD hospital admissions 
per 1 degree below the temperature threshold. 
A positive, yet non-significant association was 
observed for increased temperature. 

Fair

Su et al, 2016 
(34)

Haidian District, 
Beijing, China

Time-series PM10, PM2.5, 
SO2, NO2

Morbidity – Medical 
records of 
emergency visits

In the 0–7-day cumulative lag model, no 
significant association between PM2.5, PM10, 
SO2, or NO2, and CVD morbidity was observed.

Fair

de Freitas et 
al., 2016 (35)

Victoria,

Brazil

Time-series PM10, O3, SO2 Morbidity – Hospital 
records

In the 0–5-day cumulative lag model, CVD 
events increased by 2.11% (1.06–3.18) 
per 10 µg/m³ increase in O3. No significant 
association was observed for PM10 and SO2.

Poor 

Phung et al., 
2016 (39)

Vietnam Time-series PM10, SO2, NO2, 
O3 

Morbidity – Hospital 
admission

In the lag-3 model, neither PM10, NO2, SO2 or 
O3 had a statistically significant association 
with CVD morbidity.

Fair

Ma et al., 
2017 (42) 

Beijing,

China

Time-series PM10, SO2, NO2 Morbidity – Hospital 
admission

For a 10 µg/m³ increase in NO2, ER 
cardiovascular admission increased by 1.4% 
(RR:0.986; 95%CI:0.976–0.996) in the 0–6-day 
cumulative lag model. There was no association 
between CVD admission and PM10 or SO2.

Fair

Liu et al., 
2018 (46)

Mainland 
China 

Case 
crossover

CO Morbidity – Health 
database

A 1 mg/m3 increase in the same day CO was 
associated with a 4.39% (4.07–4.70) increase 
in CVD.

Fair

Li et al., 2018 
(47)

Beijing,

China

Case 
crossover

CO Morbidity – Health 
database

A 1 mg/m3 increase in the 2-day moving 
average of CO was associated with a 2.8% 
(2.2–3.3) increase in daily hospital CVD 
admissions.

Fair

Phosri et al., 
2019 (38)

Bangkok,

Thailand

Time-series SO2, NO2, O3, 
CO

Morbidity – Daily 
hospital admission

A 10 µg/m³ increase in PM10, SO2, and NO2 
corresponded to 0.6% (0.10–1.00), 5.3% 
(2.42–8.21), and 0.6% (0.06–1.09) increases 
in total CVD admission in the 0–4-day 
cumulative lag models, respectively. A 1 mg/
m³ increase in CO increased CVD admission by 
4.2% (1.35–7.26). No significant association 
with O3 was observed.

Fair

Yao et al., 
2019 (86)

Yichang 
Province, China

Time-series PM10, PM2.5 Morbidity – Daily 
inpatient records

There was no statistically significant 
association between PM10 or PM2.5 and CVD 
admission in the lag 7 model.

Fair

Amsalu et al., 
2019 (32)

Beijing,

China

Time-series PM2.5 Morbidity – Daily 
hospital admission

In the 0–3-day lag model, a 10 µg/m³ 
increase in PM2.5 was associated with a 0.7% 
(0.4–0.9) increase in CVD hospital admissions.

Fair

Cheng et al., 
2019 (48)

Lanzhou city,

China

Time-series CO Morbidity – Daily 
CVD hospitalization

In the lag 0–4 model, a 1 mg/m³ increase 
in CO was associated with an 11% increase 
(95%CI: 3%–20%) in CVD hospitalization.

Fair

Khan et al., 
2019 (45)

Dhaka,

Bangladesh

Case 
crossover

PM2.5 Morbidity – 
Emergency room 
visit

An IQR increase (103 µg/m) of PM2.5 
corresponded to a 15% increase (1–30) in 
CVD emergency room visits in the 3–5-day lag 
model. 

Fair

Phosri et al., 
2020 (43)

Bangkok,

Thailand

Time-series Temperature Morbidity – Daily 
hospital admission

In the 0–21 lag models, an “extremely high” 
diurnal temperature range (11.6°C) was 
associated with a 20.6% (0.2–45.2) increase in 
CVD hospital admissions.

Fair

Table 1 Description of included articles on CVD morbidity/mortality and environmental factors.
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Rahman et al., 
2022 (40)

Dhaka,

Bangladesh

Time-series Temperature Morbidity – Count of 
CVD from Database

There was no association between a 1°C 
increase in temperature variability and ED 
visits for cardiovascular disease.

Fair

Karbakhsh et 
al., 2022 (44)

Iran Case 
crossover

PM10, PM2.5, 
PMcoarse

Morbidity – CVD 
admitted

An IQR increase in PMcoarse (IQR: 55 µg/m3) 
and PM10 (IQR: 71 µg/m3) was associated with 
an increase in CVD admission (OR:1.02; 95% 
CI: 1.00–1.05 and 1.02; 95% CI:1.01–1.04) 
respectively in the lag 0–1–2 model. No 
significant effect was observed for PM2.5.

Fair

Makunyane et 
al., 2023 (37)

Cape Town,

South Africa

Time-series Temperature Morbidity – Daily 
counts of hospital 
admission

An IQR (6.4°C) increase in temperature 
variability of TV was associated with a 2.61% 
(1.15–4.08) increase in hospital admissions.

Fair

Ji et al., 2021 
(49)

Mainland 
China 

Cohort Solid fuel Morbidity – Response 
from questionnaire

Individuals using solid fuels at baseline had a 
higher risk of non-fatal CVD event than those 
using clean fuels (HR:1.18; 95% CI:1.05–1.32). 

Fair

Liu et al., 
2021 (50)

Mainland 
China 

Cohort PM2.5 Morbidity – Based 
on Disease 
classification

An IQR increase in PM2.5 (27.9 µg/m3) 
increased the risk of CVD morbidity (HR:1.291, 
95% CI: 1.147–1.54).

Fair

Mai et al., 
2032 (51)

Mainland 
China 

Cohort PM2.5 Morbidity – Response 
from questionnaire

A 10 µg/m³ increase in PM2.5 was associated 
with an increased risk of CVD morbidity 
(OR:1.18 95% CI: 1.12–1.26).

Fair

Wen et al., 
2023 (52)

Mainland 
China 

Cohort Solid fuel Morbidity – Self 
Assessment

Treatment effect of cardiovascular disease 
after implementation of coal-to-gas/electricity 
project was not statistically significant.

Fair

Wang et al., 
2023 (53)

Mainland 
China 

Cohort NO2 Morbidity – 
Questionnaire

A 10 µg/m3 increase in NO2 resulted in an 
elevated risk of CVD morbidity (HR:1.558 95% 
CI: 1.477–1.642).

Fair 

Liu et al., 
2023 (54)

Mainland 
China 

Cohort Solid fuel Morbidity – Response 
from questionnaire

The use of solid fuel for cooking and heating 
versus clean fuel increased the risk of nonfatal 
CVD incident by 43.0% [HR:1.43 (1.07–1.92)].

Fair

Zhu et al., 
2024 (55) 

Mainland 
China, 

Cohort O3 Morbidity – 
Questionnaire

A 10 µg/m3 increase in long-term O3 exposure 
was positively associated with incident of CVD 
(HR:1.078 95% CI: 1.050–1.106).

Fair 

Xia et al., 
2023 (85)

Mainland 
China

Cohort PM2.5 Morbidity & Mortality 
– Questionnaire

A 10 µg/m³ increase in PM2.5 was positively 
associated with total CVD morbidity (HR:1.12, 
95% CI: 1.11–1.14) and CVD mortality 
(HR:1.12 95% CI: 1.08–1.15).

Good

Liang et al., 
2020 (84)

Mainland 
China

Cohort PM2.5 Morbidity & Mortality 
– Extracted from 
questionnaire

A 10 µg/m³ increase in PM2.5 gave HRs for CVD 
incidence and mortality of 1.25(1.22–1.28) 
and 1.16 (1.12–1.21), respectively.

Good

Jalali et al., 
2021 (23)

Isfahan,

Iran

Cohort PM2.5 Morbidity & Mortality 
– Questionnaire & 
health records

The risk of CVD event increased by 2.6% 
(OR:1.026, 95% CI:1.016–1.036) for a 10 µg/
m³ increase in PM2.5. No significant association 
was observed between PM2.5 and CVD 
mortality.

Fair 

Zhang et al., 
2006 (57) 

Shanghai,

China

Time-series O3 Mortality – Database An increase of 10 µg/m³ in the 4-day O3 
average corresponded to a 0.9% increase 
(95% CI: 0.5–1.4) in total cardiovascular 
mortality.

Fair

Tam et al., 
2010 (58)

Hong Kong 
Administrative 
Region

Time-series Temperature Mortality – Database In the 0–3 lag model, a 1°C increase in diurnal 
temperature range resulted in a 1.7% increase 
in cardiovascular mortality (RR:1.017, 95% CI: 
1.003–1.033)

Poor

Yang et al., 
2012 (87) 

Suzhou 
Province, China

Time-series O3 Mortality – Database An IQR increase in the 24-hour average 
concentration of O3 (33.3 µg/m3) was 
associated with a 3.33% (95% CI: 0.50–6.16) 
increase in CVD mortality.

Fair

Chen et al., 
2012 (60) 

Mainland 
China

Time series SO2 Mortality – Database A 10 µg/m³ increase in the 2-day moving 
average of SO2 was associated with a 0.83% 
increase in cardiovascular mortality (95% 
PI:0.47–1.19).

Fair

Wichmann 
& Voyi, 2012 
(76) 

South Africa Case 
crossover 

PM10, SO2, NO2 Mortality – Database There was a 3.4% (0.3–6.6) and 2.6% (0.1–5.2) 
increase in cardiovascular mortality per IQR 
increase in NO2 (IQR: 12 µ/m3) and SO2 (IQR: 
8 µg/m3), respectively. No significant effect of 
PM10 was observed.

Fair 
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Fuhai Geng et 
al., 2013 (61) 

Shanghai,

China

Time-series BC & PM2.5 Mortality – Database An IQR increase in the mean daily 
concentrations of BC (IQR: 2.7 µg/m3) and 
PM2.5 (IQR: 41.8 µg/m3) corresponded to a 
3.2% (0.6–5.7) and 3.3% (0.4–6.1) increase in 
total cardiovascular mortality, respectively.

Fair

Wang et al., 
2014 (62) 

Suzhou 
Province, China

Time-series Temperature Mortality – Database In the 0–28 lag model, extreme cold (1st 
centile: –0.3°C) and hot (99th centile: 32.6°C) 
temperatures were positively associated with 
cardiovascular mortality with RRs of 2.67 
(1.64–4.33) and 1.62 (1.21–2.17), respectively.

Fair 

Han et al., 
2017 (63) 

Jinan Province, 
China

Time-series Temperature Mortality – Database Cold spells (3 consecutive days below –3.8°C) 
and heat waves (3 consecutive days above 
29°C) were associated with CVD mortality 
RRs of 1.06 (1.03–1.10) and 1.03 (1.00–1.06), 
respectively

Fair 

Chen et al., 
2018 (65) 

Mainland 
China 

Time-series NO2 Mortality – Database A 10 µg/m³ increase in the 2-day average 
concentration of NO2 would increase total 
cardiovascular mortality by 0.9% (0.7–1.2)

Fair

Chen et al., 
2018 (64) 

Mainland 
China 

Time-series PM2.5 Mortality – Database In the 0–2 lag model, no significant 
association between PM2.5 and cardiovascular 
mortality was observed.

Fair

Liu et al., 
2018 (66)

Mainland 
China 

Time-series CO Mortality – Database In the 0–1 lag model, a 1 mg/ m³ increase 
in CO was associated with a 1.12% (PI:0.42–
1.83) increase in cardiovascular mortality

Fair

Wu et al., 
2018 (67) 

Guangzhou 
Province, China

Time-series PM2.5, PM10 & 
PM10-2.5

Mortality – Database In the lag 06 model, a 10 µg/m3 increase in 
PM2.5, PM coarse, and PM10 was associated 
with an excess risk for CVD mortality of 
1.15% (95% CI: 0.68, 1.62), 1.64% (95% CI: 
0.86, 2.43), and 0.82% (95% CI: 0.49, 1.14), 
respectively.

Fair

Zhang et al., 
2019 (41)

Jiangsu 
Province, China

Time-series O3 Mortality – Database In the lag 0–3 model, a 10 µg/m³ increase 
in O3 was associated with a 0.983% (0.588–
1.3770) increase in CVD-related death.

Fair

Liu et al., 
2019 (68) 

Shenyang 
Province, China

Time-series PM10, PM2.5, 
SO2, NO2, O3, 
CO

Mortality – Death 
registry 

In the lag 05 model, 10 µg/m³ increases in 
PM2.5, PM10, SO2, and NO2 were associated with 
RRs for CVD mortality of 1.004 (1.001, 1.008), 
1.003 (1.001, 1.006), 1.005 (1.001, 1.009), 
and 1.016 (1.005, 1.028), respectively. A 1 
mg/m³ increase in CO was associated with 
an RR of 1.066 (1.025, 1.108). No significant 
association was observed for O3.

Fair

Duan et al., 
2019 (69) 

Shenzhen 
Province, China

Time-series NO2 Mortality – Database In the lag 0–5-day model, a 10 µg/m³ increase 
in NO2 was associated with a 3.41% (1.55–
5.30) increase in cardiovascular mortality.

Fair

Iranpour et al., 
2020 (70)

Ahvaz,

Iran

Time-series Temperature Mortality – Database In the 0–28-day lag model, no association 
between heat above the 99th centile (41.2°C) 
or below the 1st centile (9.3°C), and CVD 
mortality was observed.

Fair

Khosravi et al., 
2020 (71) 

Mashhad,

Iran

Time-series PM10, PM2.5, 
NO2, O3, CO

Mortality – Database None of the five pollutants assessed were 
associated with cardiovascular mortality.

Fair

Zhou et al., 
2021 (72) 

Taiyuan 
Province, China

Time-series PM10, PM2.5 Mortality – Database In the 0–30 lag model, a 10 µg/m³ increase in 
PM2.5 and PM10 was associated with a 3.10% 
(0.86–5.38) and 1.61% (0.69–2.54) increase in 
cardiovascular mortality.

Fair

Li et al., 2021 
(73)

Guangzhou 
Province, China

Time-series O3 Mortality – Registry In the 0–3 lag model, a 10 µg/m³ increase in 
O3 was associated with a 0.59% (0.30–0.88) 
increase in CVD mortality.

Fair

Olutola et al., 
2023 (75) 

South Africa Case 
crossover

PM10, SO2, NO2 Mortality – Database In the 0–6-day lag model, none of the 
examined pollutants were associated with 
increased CVD mortality.

Fair 

Xia et al., 
2023 (74) 

Chengdu,

China

Time-series Temperature Mortality – Database In the 0–14-day lag model, extreme heat (99th 
centile, >29  °C) and extreme cold (1st centile, < 
3°C) were both associated with increased CVD 
mortality, with RRs of 1.28 (1.14–1.43) and 
1.45 (1.24–1.68), respectively.

Fair 

(Contd.)



AUTHOR & 
YEAR

LOCATION STUDY 
DESIGN

MAIN 
EXPOSURE(S)

OUTCOME AND 
DEFINITION

MAIN FINDINGS STUDY 
QUALITY

Cao et al., 
2011 (59) 

Mainland 
China 

Cohort SO2, TSP, NOX Mortality – Hospital 
records 

A 10 µg/m³ increase in TSP, SO2, and NOx 
corresponded to 0.9% (95% CI: 0.3, 1.5), 3.2% 
(95% CI: 2.3, 4.0), and 2.3% (95% CI:0.6, 
4.1) increases in cardiovascular mortality, 
respectively.

Fair 

Wong et al., 
2015 (77) 

Hong Kong, 
Administrative 
Region

Cohort PM2.5 Mortality – Death 
registry

A 10 µg/m³ increase in PM2.5 exposure 
was associated with a 22% increase in 
cardiovascular mortality [HR:1.22 (1.08–1.39)].

Fair 

Yu et al., 2018 
(78)

Mainland 
China 

Cohort Solid fuel Mortality – 
Questionnaire 

Solid fuel use for cooking or heating was 
significantly associated with higher risk of 
cardiovascular mortality [HR:1.20 (1.02–1.41)] 
and [HR:1.29 (1.06–1.55)], respectively. 

Fair 

Yang et al., 
2018 (79)

Mainland 
China 

Cohort PM2.5, NO2 & BC Mortality – Database An IQR increase in PM2.5 (5.5 µg/m3) or BC 
(9.6 µg/m3) was associated with increased 
HRs for CVD mortality (1.06 [1.02–1.10] and 
1.07 [1.02–1.11], respectively. No significant 
association was observed for NO2. 

Fair 

Arku et al., 
2020 (80)

China, India, 
South Africa 
and Tanzania

Cohort Kerosene Mortality – Hospital 
records, Death 
certificate and 
Verbal autopsies

Household cooking primary with kerosene had 
a 34% [HR:1.34 (1.08–1.66)] increase in major 
cardiovascular disease mortality.

Fair

Liang et al., 
2022 (81) 

Mainland 
China

Cohort PM2.5 Mortality – Death 
registry

A 10 µg/m³ increase in PM2.5 was associated 
with a HR for cardiovascular mortality of 1.02 
(1.00–1.05).

Good

Liu et al., 
2022 (82) 

Yinzhou 
Province, China

Cohort O3 Mortality – Death 
registry 

A 10 µg/m³ increase in long-term annual 
average of O3 increased cardiovascular 
mortality by approximately 22% [HR:1.22 
(1.12–1.33)].

Good

Niu et al., 
2022 (83)

Mainland 
China

Cohort O3 Mortality – Death 
registry

A 10 µg/m³ increase in O3 was associated with 
an elevated risk of cardiovascular mortality 
[HR:1.093 (1.046–1.142)].

Good

the articles selected was discussed, and an agreement was reached. Articles identified through 
title/abstract screening subsequently underwent full-text screening. Articles retained following 
full-text screening underwent data extraction for information on author, title, publication year, 
study location, study period, study design, outcome type, mean/median exposure, comorbidities 
controlled for, total population, and type of pollution or climatic factor exposure studied.

RISK OF BIAS ASSESSMENT

The quality and risk of bias of the identified studies were evaluated by two reviewers (SG and 
GD) using the study Quality Assessment Tool of the National Health Institute/National Heart, 
Lung and Blood Institute (NHI/NLBI) (28). The tool has a rating of good, fair, and poor based on 
fourteen criteria assessments. Ratings of poor quality are associated with high risk of bias, with 
fair and good being associated with medium and low risks of bias, respectively.

STATISTICAL ANALYSIS/META-ANALYSIS

Studies were pooled and examined based on whether they examined either short (e.g., time-
series analysis) or long (e.g., cohort) term exposures. In addition, studies examining similar 
environmental components and designs were pooled via random-effect meta-analysis. When 
examining short-term exposures, the longest combined (i.e., cumulative or pooled) lag effect 
(e.g., pooled lag over days 0–7) reported was retained for analysis. This decision was made to 
avoid selecting only lag estimates with positive findings. Effect estimates (Risk Ratio (RR)/Odds 
Ratio (OR), Hazard Ratio (HR), percentages) and 95% confidence intervals (95% CI) or sufficient 
information included for estimates calculation were extracted and configured to indicate the 
impact per specific increment in exposure. Exposures to PM10, PM2.5, NO2, SO2, BC, and O3 were 
pooled for a 10 µg/m³ increment, and CO exposure was pooled for a one part per million (ppm) 
increment. Exposure to solid fuel was based on solid fuel versus clean fuel. Studies reporting 
percentage change were converted to RR using the below formula:

Percentage change
 = + 1

100
RR
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A forest plot was used to visualize the summaries of the included studies. Both visual inspection 
of the forest plot and I2 statistics were used to assess the degree of heterogeneity of the true 
effect. Results of I2 < 30%, 30%–50%, and >50% were interpreted to indicate no, moderate, and 
substantial heterogeneity, respectively. Begg’s and Egger’s tests were used to assess publication 
bias and small study effects for meta-analysis involving five or more studies (29). As the association 
between temperature and morbidity/mortality tends to follow a U or J shape, meta-analysis was 
not performed. Instead, we described these effects at high and low temperatures. All analyses were 
conducted using R version 4.3.1 (30), and a two-sided P < 0.05 was deemed statistically significant.

RESULTS
In total, the search returned 7,306 articles across the seven databases. After duplicate 
removal, 6,540 articles remained. After title and abstract screening, 58 papers were retained 
for data extraction and analysis—26 of which examined morbidity, 29 examined mortality, 
and 3 examined both. For details regarding article selection, see Figure 1. Nine different 
exposure parameters were examined (PM10, PM2.5, SO2, NO2, O3, temperature variation, CO2, Black 
Carbon, and solid fuel), with the number examined per paper ranging from one to six (the 
average examined was approximately two). Single-exposure models were most used, with a 
smaller number of articles utilizing multi-exposure models in secondary analysis. We therefore 
primarily focused on the findings of single exposure models. A variety of methods of reporting 
CVD morbidity/mortality were used, including physician diagnosis, self-report, national disease 
surveillance database, verbal autopsy, death certificate, and hospital records. In terms of study 
location, the majority (n = 42, 72%) of studies were conducted in Mainland China. Regarding 
other regions, 4 studies were conducted in Iran, 3 each in Thailand and South Africa, 2 each in 
Vietnam and Bangladesh, and 1 in Brazil. Only one study was conducted in multiple countries, 
thus; China, India, South Africa, and Tanzania. Most (n = 53) papers had a moderate to low risk 
of bias, with 51 papers being determined as a ‘fair’ quality and 5 as ‘good’ (Table 1).

The relationship between environmental exposure(s) and CVD morbidity/mortality was 
examined either through the relationship between short-term changes in exposure and acute 
events or through long-term exposures and CVD disease. Short-term exposures were typically 
examined through a lag of up to 7 days, except for studies examining temperature, where 
lags of up to 28 days were also observed. Of the twenty-six articles examining cardiovascular 
morbidity, 17 assessed the effect of short-term exposures (of which 13 used time series (31–
43), and 4 used a case-crossover design (44–47)). Among the 9 studies examining long-term 
exposures, 8 utilized cohort studies (48–55), and 1 used a cross-sectional approach (56). Of the 
29 articles examining cardiovascular mortality, 21 examined short-term effects (of which 19 
used a time-series design (41, 57–74) and 2 used a case-crossover design (75, 76), with the 
remaining 8 articles examining long-term effects by use of a cohort study design (59, 77–83). 
The 3 articles assessing the effect on both morbidity and mortality all examined long-term 
effects by use of a cohort design (23, 84, 85).

Figure 1 Description of the 
articles selection processes.
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1.1: THE EFFECT OF SHORT-TERM EXPOSURES ON CARDIOVASCULAR MORBIDITY 
AND MORTALITY

1.1.1: Exposure to PM10

The effects of short-term exposure to PM10 on CVD morbidity and mortality were reported by nine 
and six articles, respectively, typically showing a combination of increased or null likelihoods of 
disease or mortality. Of the nine morbidity articles, eight (33–36, 38, 39, 42, 86) utilized a time 
series design, with the remaining article utilizing a case-crossover design (44). The time-series 
articles were retained for meta-analysis. The case-crossover study reported that for a 10 µg/m³ 
increase in PM10, the risk of CVD morbidity increases by 0.6% (95% CI: 0.4–0.8) (44). In the meta-
analysis, a 10 µg/m3 increase of PM10 was found to increase short-term CVD morbidity by 0.1% 
(i.e., an RR of 1.001) with a 95% confidence interval (CI) of 0.0% to 0.3%. There was no evidence 
of publication bias for morbidity outcomes (Begg’s test, p = 0.4885, and Egger’s test, p = 0.3988).

With regards to the six articles examining short-term exposure to PM10 and CVD mortality, 
four utilized a time series design (67, 68, 71, 72) and were included in the meta-analysis. The 
remaining two (33, 76) utilized a case-crossover design, neither of which displayed significant 
results in their maximal lag models. The pooled meta-analysis found that, for a 10 µg/m³ 
increase in PM10, the risk of CVD-related death increases by 0.7% (RR: 1.007 95% CI: 1.000–
1.014)]. Publication bias was not assessed for mortality due to the relatively small number of 
papers. Further details are presented in Supplementary Figure A1.

1.1.2: Exposure to PM2.5

Short-term exposure to PM2.5 and its effects on CVD morbidity were assessed by four articles 
(32, 34, 44, 86), and its effects on mortality were assessed by six (61, 64, 67, 68, 71, 72), with 
studies tending to show positive associations, albeit with a combination of significant and non-
significant effects. Of the four morbidity studies, three (32, 34, 86) represented time-series 
design and were included in the meta-analysis (the remaining case-crossover study did not 
identify a significant relationship between PM2.5 and CVD morbidity). The pooled meta-analysis 
found that a 10 µg/m³increase in PM2.5 was associated with a 0.6% increase in CVD morbidity 
(RR: 1.006, 95% CI: 1.003–1.009). Due to the small number of articles examining morbidity, a 
test of publication bias was not performed, and no heterogeneity was observed.

For the effects of short-term PM2.5 exposure on CVD-related mortality, all six studies utilized a 
time-series design and were included in the meta-analysis. The overall pooled results indicated 
that a 10 µg/m³increase in PM2.5 corresponded to a 0.7% increase in CVD mortality (RR: 1.007, 95% 
CI: 1.002–1.012). There was some evidence of publication bias (Begg’s test, p = 0.015; Egger’s test, 
p = 0.7194), and substantial heterogeneity was observed. Further details are presented in Figure 2.

1.1.3: Exposure to NO2

The short-term effects of NO2 exposure on CVD morbidity and mortality were evaluated by 
five and six studies, respectively. Overall, the association between NO2 and CVD morbidity was 
mixed, with a more positive association observed with mortality. All five studies examining 
CVD morbidity were of time-series design and thus included in the meta-analysis (34, 36, 38, 
39, 42). In pooled meta-analysis, no significant association between NO2 exposure and CVD 
morbidity was observed [RR: 1.00 (95% CI: 0.991–1.008)]. No publication bias was observed 
(Begg’s test, p = 0.5109, and Egger’s test, p = 0.2333).

When examining the effect of NO2 on CVD mortality, four out of the six studies utilized a time-
series design and were included in the meta-analysis. The remaining two articles, utilizing a case-
crossover design, showed no association between NO2 and mortality in their maximal lag models 
(75, 76). Meta-analysis found that a 10 µg/m³ increase in NO2 resulted in a 1.9% [RR: 1.019 (95% 
CI: 1.005–1.032)] increase in CVD-related deaths. Some evidence of publication bias was observed 
(Begg’s test, p < 0.0001, and Egger’s test, p = 0.0833). Further details are presented in Figure 3.

1.1.4: Exposure to O3

The effects of O3 exposure on CVD morbidity and mortality were assessed by four and six 
articles, respectively, with limited evidence being observed for an association between O3 and 
morbidity, although there was more consistent evidence for an increased association with CVD 
mortality. All four articles examining morbidity utilized a time-series design and were included 
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in the meta-analysis (33, 35, 38, 39), which found no overall association between a 10 µg/m³ 
increase in O3 exposure and CVD morbidity (RR: 1.004, 95% CI: 0.995–1.014) (35).

For CVD mortality, all six articles utilized a time-series design and were thus included in the 
meta-analysis (41, 57, 68, 71, 73, 87), which indicated that a 10 µg/m³ increase in O3 exposure 
was associated with a 0.9% increase in CVD-related mortality [RR: 1.009 (95% CI: 1.006–1.012)]. 
No evidence of publication bias was found in the mortality outcomes (Begg’s test, p = 0.1949, 
and Egger’s test, p = 1.7194). Further details are presented in Figure 4.

1.1.5: Exposure to SO2

Four and six articles examined the short-term effects of SO2 on CVD morbidity and mortality, 
respectively. All six morbidity articles incorporated a time-series design and were included in the 
meta-analysis (34–36, 38, 39, 42), which did not show a significant pooled association (RR: 1.006 
95% CI: 0.993–1.020). No evidence of publication bias was observed (Begg’s test, p = 0.0492, 
and Egger’s test, p = 0.4694). Details of the meta-analysis are found in Supplementary Figure A2.

Figure 2 Meta-analysis of 
short-term PM2.5 exposure and 
CVD morbidity and mortality.
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Meta-analysis was not performed to examine the pooled effect of SO2 on CVD mortality as two 
papers utilized time-series design and the other two case-crossover. However, three of the four 
articles reported a positive and significant association (60, 68, 76), with effect sizes ranging 
from 0.8% (95% CI: 0.47–1.19) to 3.3% (95% CI: 0.06–7.9) per 10 µg/m3 increment, with the 
fourth reporting no significant association (75).

1.1.6: Exposure to CO

Two articles examined the impact of CO on CVD morbidity, and three examined mortality. Due 
to the limited number of articles, a meta-analysis was not performed. Both articles examining 
morbidity reported a positive association with a 1 ppm increase in CO exposure increasing 
morbidity by 4.2% (95% CI: 1.35–7.26%) and 11% (3–20%). Two of the three articles examining 
the effect of CO on mortality reported a positive effect (66, 68), with results ranging from 
1.1% (0.42–1.83%) to 6.5% (2.5–10.8%). The final article observed no significant association 
between CO and CVD mortality.

1.1.7: Temperature exposure

Four and five articles assessed the effect of temperature variation on CVD morbidity and 
mortality, respectively, with effects observed at temperatures that were both higher and lower 
than normal temperatures. Out of the four articles examining temperature variation on CVD 

Figure 3 Meta-analysis of 
short-term NO2 exposure and 
CVD morbidity and mortality.
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morbidity, two reported a significant association between higher-than-normal temperatures 
and CVD morbidity (37, 43). One reported that lower-than-normal temperatures increased 
CVD morbidity (with no significant effect for hot temperatures reported) (31). The final article 
reported no relationship between temperature variation and CVD morbidity (40).

Among the five articles examining temperature and CVD mortality, three reported significantly 
increased mortality associated with both abnormally high and low temperatures. One article 
reported an association only for increased temperature, and one reported no association 
between temperature and mortality in its maximally lag-adjusted model.

1.1.8: Other components

One article examined the impact of Black Carbon exposure on CVD mortality, reporting that an 
IQR increase (2.7 µg/m3) in BC was associated with a 3.2% (95% CI: 0.6–5.7%) increase in CVD 
mortality. Two articles examined PMcoarse, one examining morbidity and the other mortality. 
Both articles reported a positive association between exposure and morbidity/mortality.

1.2: THE EFFECT OF LONG-TERM EXPOSURES ON CARDIOVASCULAR 
MORBIDITY AND MORTALITY

1.2.1: Exposure to PM10

Only one article assessed the long-term effect of PM10 on CVD morbidity, reporting no effect in 
cross-sectional analysis (56). The impact of PM10 on CVD mortality was not assessed.

Figure 4 Meta-analysis of 
short-term O3 exposure and 
CVD morbidity and mortality.
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1.2.2: Exposure to PM2.5

CVD morbidity and mortality in relation to long-term PM2.5 exposure was assessed by five and 
six articles, respectively, consistently showing increased associations between PM2.5 and CVD 
morbidity/mortality. All five articles evaluating morbidity utilized a cohort design and were 
included in the meta-analysis (23, 50, 51, 84, 85), finding that a 10 µg/m³ increase in PM2.5 
exposure increased CVD morbidity by approximately 13.1% [RR: 1.131 (95% CI: 1.057–1.210)]. No 
evidence of publication bias was observed (Begg’s test, p = 0.4522, and Egger’s test, p = 0.8167).

All six articles examining mortality also employed cohort design (23, 77, 79, 81, 84, 85), with 
meta-analysis indicating that a 10 µg/m³ increase in PM2.5 exposure increased CVD-related 
mortality by 9.2% [RR: 1.092 (95% CI: 1.030–1.159)]. However, some evidence of publication bias 
was observed (Begg’s test, p = 0.0401, and Egger’s test, p = 0.2722). Details are given in Figure 5.

Figure 5 Meta-analysis of 
long-term PM2.5 exposure 
and cardiovascular disease 
morbidity and mortality.
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1.2.3: Exposure to SO2

One article examined the long-term effects of SO2 on CVD morbidity, reporting no association 
in a cross-sectional analysis (56). In contrast, one article, utilizing a cohort design, investigated 
the effect of long-term exposure to SO2 on CVD mortality, reporting that a 10 µg/m3 increase in 
SO2 exposure was associated with a 3.2% (95% CI: 2.3–4.0%) increase in mortality.

1.2.4: Exposure to NO2

Two articles assessed the long-term effects of NO2 exposure on CVD morbidity (53, 56). One, 
in a cross-sectional analysis, reported no association between NO2 and CVD morbidity. By 
contrast, the second article, employing a cohort design, reported that a 10 µg/m3 increase in 
long-term NO2 was associated with a large increase in CVD risk morbidity (RR: 1.558, 95% CI: 
1.477–1.642) (53). With respect to mortality, one article examined the impact of NO2 exposure 
on CVD mortality, reporting a relative risk of approximately 1.00.

1.2.5: Exposure to O3

Two articles evaluated the long-term effect of O3 on CVD morbidity, with a null association 
observed in cross-sectional analysis (55, 56). A cohort study examining O3 exposure and CVD 
morbidity, however, reported that a 10 µg/m3 increase in O3 was associated with a 7.8% (95% 
CI: 5.0–10.6) increase in CVD morbidity (55). Two articles assessed the effect of O3 on CVD 
mortality (82, 83), both reporting significant associations between O3 and CVD mortality, with 
a 10 µg/m3 increase being associated with a 22% (95% CI: 12%–33%) or 9% (95% CI: 4.6%–
14.2%) increase in mortality.

1.2.6: Use of solid fuels

Three articles evaluated the long-term effect of using solid/polluting fuels versus clean fuel 
on CVD morbidity (49, 52, 54). Two of these studies reported that the long-term use of solid 
fuels was associated with increased risks of cardiovascular events. One article, examining the 
implementation of a coal-to-gas/electricity project, did not observe a significant change in 
cardiovascular morbidity. Two articles examined fuel use and mortality, one examining the use of 
kerosene in a multi-center study reported that kerosene usage (compared to clean alternatives) 
was associated with a 34% increase in mortality (95% CI: 8–66%). The other article reported 
that cooking on solid fuels was associated with a CVD mortality HR of 1.20 (95% CI 1.02–1.41), 
whereas using them for heating was associated with an HR of 1.29 (95% CI: 1.06–1.55).

1.2.7: Other pollutants

One study assessed the effect of Black Carbon on CVD mortality (50), reporting that an IQR 
increase in BC (9.6 µg/m3) was associated with a 7% (95% CI: 2–11%) increase in CVD mortality.

DISCUSSION
This review and meta-analysis sought to summarize the available evidence regarding climatic 
and environmental exposures and their association with CVD morbidity and/or mortality in 
LMICs. Among the main findings were that both short- and long-term exposure to a variety 
of air pollutants was associated with both CVD morbidity and mortality. Of note, short- and 
long-term exposure to PM2.5, a well-recognized air contaminant, was consistently associated 
with increased CVD morbidity and mortality. In addition, short-term disruptions to temperature 
(both above and below normal) were also associated with morbidity and mortality. Additionally, 
short-term exposure to NO2 and O3 was associated with CVD mortality. The long-term use of 
solid or other polluting fuels was also found to be associated with CVD morbidity and mortality. 
The vast majority of studies in this review were conducted in China. Other LMIC regions, 
especially Africa, are significantly understudied, limiting the generalizability of our findings.

Particulate matter (PM) is a commonly used proxy for air pollution. It is a complex mixture of 
particles that vary widely in size, shape, and chemical composition, which, at smaller sizes, can 
penetrate the respiratory system. Consistent with other epidemiological studies, we observed 
PM2.5 to be consistently associated with adverse health effects (88). In this review, the overall 
risk ratio of long-term PM2.5 exposure on CVD mortality in LMICs was 1.092 (95% CI: 1.030–
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1.159) per 10 µg/m³ increase. This is comparable to the findings of Guo et al. (2022), who, in 
their study of LMICs, reported a risk ratio of 1.10 (95% CI: 1.06–1.14) (89) and another study in 
the United States, which reported a hazard ratio of 1.10 (95% CI: 1.05–1.15) (90).

Many gaseous pollutants such as SO2, NO2, O3, and CO can be classified as short-term exposures 
due to their brief presence in the atmosphere and temporal variability. Accordingly, the majority 
of the studies in this review examined the short-term impact of these air pollutants. Of these, 
NO2 and O3 were most commonly studied. In general, short-term NO2 exposure did not appear 
to influence CVD morbidity, a finding comparable to findings from high-income countries (91o–
93). In contrast, short-term exposure to NO2 was associated with an increase in CVD mortality, 
with a pooled RR of 1.019 (95% CI: 1.005–1.032), an effect higher than what is seen in higher-
income countries (94, 95).

A similar phenomenon was observed when examining ozone, where the pooled analysis did 
not suggest an association with CVD morbidity but did for mortality. This may be indicative 
of differences in short-term biological effects of these agents or of health care challenges 
contributing to higher mortality patterns. Compared with results from higher-income countries, 
this review had divergent results on the effect of ozone on CVD morbidity (92, 96).

The use of solid fuels for household heating and cooking is another well-established risk factor 
for mortality worldwide. The findings from this review largely affirm this finding, showing 
consistently increased risks of CVD morbidity and mortality in relation to solid fuel use (97, 98).

Ongoing climate change means that average temperatures are likely to continue to rise for 
the foreseeable future. LMICs can be especially vulnerable to the effects of rising temperature, 
as reflected by the findings from this review, where higher temperatures were consistently 
associated with increased risks of CVD morbidity and mortality. The overall LMIC research 
identified in this review showed patterns consistent with findings from high-income countries 
(99–102), where both extreme highs and lows of temperature would drive disease morbidity 
and mortality.

While this review identified nearly 58 articles, a substantial research gap remains, particularly 
in Sub-Saharan Africa. Most studies identified in this review were conducted in mainland China, 
which may not accurately reflect other LMICs. The Sub-Saharan Africa region faces distinct 
climatic/environmental and health challenges, including higher levels of poverty, varying 
pollution sources, and low-resourced healthcare infrastructures, making increased research 
crucial. Increased research on environmental health impacts within LMICs, and Sub-Saharan 
Africa in particular, is crucial for several reasons. First, the sources and types of air pollution 
can differ by geographic region due to factors such as widespread use of biomass for cooking, 
dust from unpaved roads, and unregulated emissions from industry. Again, focusing on LMICs 
can provide comprehensive data for tailored interventions and policies, contributing to more 
effective public health strategies and global health equity.

The review examined how various environmental exposures affect health in LMICs by examining 
a wide range of databases. Additionally, this review highlights a major research gap regarding 
environmental exposure and cardiovascular disease, emphasizing the need for more research, 
especially in Sub-Saharan African countries. Limitations of this review relate to the relative 
lack of long-term studies on the effect of climate/air pollution and cardiovascular disease, the 
lack of studies reporting on specific diagnoses, and the predominance of studies from Asia, 
hampering our ability to generalize the findings beyond the Asian region. Also, since the study 
only explored all-cause CVD, we were unable to explore the association of environmental 
constituents with specific CVD conditions, meaning that specific associations may have been 
overlooked.

CONCLUSION
Short- and long-term exposure to various environmental components was significantly 
associated with CVD morbidity and mortality in LMICs. Most notably, both short- and long-term 
exposure to PM2.5 was associated with CVD morbidity and mortality, a finding reflected elsewhere 
in the literature in a variety of settings. In addition, both high and low-temperature extremes 
were associated with increased morbidity and mortality, and the long-term use of solid (or 
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other polluting) fuels was found to increase CVD mortality. A major research gap was identified 
where most LMIC research comes from the Asia region, and China in particular, meaning that 
other regions, especially Sub-Saharan Africa, are markedly understudied. Therefore, context-
specific research is needed to understand better the role of environmental disruptions in these 
understudied regions. Future work will also benefit from examining the association between 
environmental changes and specific CVD conditions.
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